The intramembrane cleavage site of the amyloid precursor protein depends on the length of its transmembrane domain.

نویسندگان

  • Stefan F Lichtenthaler
  • Dirk Beher
  • Heike S Grimm
  • Rong Wang
  • Mark S Shearman
  • Colin L Masters
  • Konrad Beyreuther
چکیده

Proteolytic processing of the amyloid precursor protein by beta-secretase generates C99, which subsequently is cleaved by gamma-secretase, yielding the amyloid beta peptide (A beta). This gamma-cleavage occurs within the transmembrane domain (TMD) of C99 and is similar to the intramembrane cleavage of Notch. However, Notch and C99 differ in their site of intramembrane cleavage. The main gamma-cleavage of C99 occurs in the middle of the TMD, whereas the cleavage of Notch occurs close to the C-terminal end of the TMD, making it unclear whether both are cleaved by the same protease. To investigate whether gamma-cleavage always occurs in the middle of the TMD of C99 or may also occur at the end of the TMD, we generated C99-mutants with an altered length of the TMD and analyzed their gamma-cleavage in COS7 cells. The C terminus of A beta and thus the site of gamma-cleavage were determined by using monoclonal antibodies and mass spectrometry. Compared with C99-wild type (wt), most mutants with an altered length of the TMD changed the cleavage site of gamma-secretase, whereas control mutants with mutations outside the TMD did not. Thus, the length of the whole TMD is a major determinant for the cleavage site of gamma-secretase. Moreover, the C99-mutants were not only cleaved at one site but at two sites within their TMD. One cleavage site was located around the middle of the TMD, regardless of its actual length. An additional cleavage occurred within the N-terminal half of their TMD and thus at the opposite side of the Notch cleavage site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor.

The generation of biologically active proteins by regulated intramembrane proteolysis is a highly conserved mechanism in cell signaling. Presenilin-dependent gamma-secretase activity is responsible for the intramembrane proteolysis of selected type I membrane proteins, including beta-amyloid precursor protein (APP) and Notch. A small fraction of intracellular domains derived from both APP and N...

متن کامل

Identification of an Archaeal Presenilin-Like Intramembrane Protease

BACKGROUND The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ) implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal pe...

متن کامل

Regulated intramembrane proteolysis: from the endoplasmic reticulum to the nucleus.

Regulated intramembrane proteolysis (Rip) is an ancient and widespread process by which cells transmit information from one compartment (the endoplasmic reticulum) to another (the nucleus). Two separate cleavages that are carried out by two separate proteases are required for Rip. The first protease cleaves its protein substrate within an extracytoplasmic domain; the second cleaves it within a ...

متن کامل

Substrate recruitment of c-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping

Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer’s diseaseassociated c-secretase. Systematically scanning amyloid precursor protein substrate...

متن کامل

Substrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping.

Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease-associated γ-secretase. Systematically scanning amyloid precursor protein substrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2002